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Fractional-Order Diffusion-Wave Equation
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The fractional-order diffusion-wave equation is an evolution equation of order
a € (0, 2] which continues to the diffusion equation when o — 1 and to the
wave equation when a — 2. We prove some properties of its solution and give
some examples. We define a new fractional calculus (negative-direction fractional
calculus) and study some of its properties. We study the existence, uniqueness,
and properties of the solution of the negative-direction fractional diffusion-
wave problem.

1. INTRODUCTION

Let X be a Banach space, let Y C X, and let L,(/, Y) be the set of
functions f(¢) e Y (for each ¢+ € I) which is integrable on I (where I = [0,
T], T < ). Let A be a closed linear operator defined on X with domain
D(A) dense in X. We have d*/di* as the fractional differential operator of
order a > 0 (El-Sayed, 1992, 1993, 1995; El-Sayed and Ibrahime, n.d.;
Gelfand and Shilove, 1958).

Consider the fractional evolution equation

d*u(r)

= > <a= 1.1
pr Au(r), t>0 0<a=2 (1.1)

Here we study first the continuation of equation (1.1) when @ - 1 and «
— 2. We define the fractional diffusion-wave equation and the fractional
diffusion-wave problem and prove that it is well posed. Combining our results
here and the results of Wyss (1986), Scharider and Wyss (1989), and Mainardi
(1994), we give some examples.

Second, we define the negative-direction fractional calculus (integral
and derivative) and prove some of its properties.
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Finally, we study the existence, uniqueness, and properties (concerning
continuation backward in time) of the solution of the negative-direction
fractional diffusion-wave problem.

2. DIFFUSION-WAVE EQUATION

Consider the two initial value problems

dvu(t)
® AU, 1>0, 0<y=1
u(O) = Uy
dPu(t)
= Au(d), >0, 1<p=2
Q di®

u@ = up,  u(0) = u
where A satisfies the following condition:

(I) A generates an analytic semigroup {7(f), t = 0} on X; in particular,
the resolvent set of A contains the set

Al={XEC:|arg)\,l<g+81}, 0<81<g

and ||(M — A)7'|| =< M/IXI, Re X > 0 on A, for some constant M > 0, and

dou(t) _ d*u(n
dar dr*
is the fractional derivative of order a > 0 of the differentiable function u(r),

where for a > 0, () = ¢ /T'(a) for t > 0, and b(t) = O for ¢t < 0 [for
the properties of ¢.(f) see Gelfand and Shilove (1958)].

*dal®), k- 1=[a] 2.1

The following results are proved in El-Sayed (1995).

Theorem 2.1. Let u; and u, € D(A?). If A satisfies (I), then there exists
a unique solution u.(t) € L,(I, D(A)) of the problem (P) given by
]

u) = uy — J r{(s)e’ug ds, 0<vy=1l 2.2)
0

and a unique solution ug(f) € Li(I, D(A)) of problem (Q) given by

up(t) = ug + tu; — JI ra(8)e’(ug + (t — s)uy) ds 2.3)
0
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and when u; = 0, we have

lim wu,() = lim ug(t) = Tup = (1)

y=1- B—=1
o du,(D) _ dPug() du,
1 2= = AT(Dug = —
7 I Do =~
where u,(r) is the solution of the Cauchy problem
d
% = Au@),  u(0) = ug 2.4)

and r,(t) € L(D(A%), D(A)) N L(D(A), X) is the resolvent operator satisfying
[for y € D(A?)]

—e ' Do (NAy + ro(1) * e 'do(NAY
e™'do(NAy + ry(DAy * e™'do(r)
[for other properties of r,(t) see El-Sayed (1995)].

r«(t)y

Now let X = R* and u(x, t): R* X I — R* then we have the follow-
ing definition.

Definition 2.2. The fractional D-W (diffusion-wave) equation is the
equation
0%u(x, 1)

Py = Au(x, 1), >0, O0<a=s? (2.5)
and the fractional diffusion-wave problem is the Cauchy problem

FUSD _ pye . 130, xeR, 0<a=2
(D-W) o

u(x, 0) = up(x), u(x,0)=0, xeR"

Lemma 2.3. Let u(x, ): R*" X I 5> R"and 0 < a = 2. If u(x, 0) = 0,
then as @ — 1 the D-W problem reduces to the diffusion problem

ou(x, 1)

o = Au(x, 1), u(x,0) = ug(x), xe R, t>0 (2.6)

and as a — 2, the D-W problem reduces to the wave problem

u(x, 1)

3% = Au(x, 1), u(x, 0) = up(x), ux,00=0 2.7)
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Proof. Let 0 < a = 1; then from the properties of the fractional derivative
and the convolution operation (Gelfand and Shilove, 1958) we get

. 0%u(x, ) . {ou(x, t)
1 =1 * by _(t
Y ﬂ'( o - ())
6 X, t Ju(x, t
W) ;) = 20D
t
and when 1 < o < 2 we have
lim &40 (2 “(x D s aul)
a—)l+ ata a—1
. [8%u(x, p)
= l *k
a‘f}( p¥ d>1(t))
_ Ou(x, ) _ du(x, )
o WO =0
we also have
. %ulx, D %u(x, .
— _qlL
il-az ] l-»z( ar? b2-a()
_ u(x, D . _ %u(x, 1)

s o0 ="p
and the result follows.

Combining the resuits of Theorem 2.1 and Lemma 2.3, we can easily
prove the following theorem.

Theorem 2.4. Let ug(x) € D(A?). If A satisfies the condition (I) where
X = R, then the D-W problem has a unique solution u,(x, £) € LI, D(A))
continuous with respect to a € (0, 2] and satisfies

lim wu(x, £) = lim u,(x, 1) = T(H)ug(x) (2.8)
a1 a1t

lim wuy(x, £) = uy(x, t) 2.9)
a2

where u,(x, ) is the solution of the wave problem (2.7).

Theorem 2.5. If the assumptions of Theorem 2.4 are satisfied, then the
solution of the D-W problem continuously depends on the initial data uy(x).
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Proof. Let uy(x, 1) be the solution of the D-W problem and Z,(x, ¢) be
the solution of the D-W problem with #,(x) instead of up(x); then for given
€ > 0 such that |lup(x) — dp(x)]|pu2) < € we have (El-Sayed, 1995)

Ug(x, 1) — iy(x, 1)

!

= ug(x) — dp(x) + J ro(s)e’(uolx) — iio(x)) ds
0

and so

"ua(xs t) - ﬁa(x’ t)"D(A)

ce't _
= (l + T)II“O(X) - uo(x)"D(Az)

= (l + %)e = 8(€)

which proves the theorem.

3. EXAMPLES

1. Let A = (—1)!'*"V2" x = Rt and uy(x) € Wi™(R"), 1 < p < oo,
Then the results here can be applied to the D-W problem

%u(x, t) L O 2m
gL D _(—nitmy
Y -1 u(x, 1

(D-W) xeR, t>0, 0<a=2

uix, 0) = upx),  ufx,0)=0
2.Letm =1,k = 1, and p = 2 in Example 1. Then combining our

results here and the results of Wyss (1986) and Schnrider and Wyss (1989),
we deduce that the D-W problem

: l;(;,_-t)' =Vux,t), t>0, xeR, 0<a=x2

u(x, 0) = ug(x) € Wi(R",  u(x,0)=0

has a unique solution u.(x, f) € L,(/, W%(R"™)) given by

Ug(x, 1) = J Golx =y, Dup(y)dy, 0<a=2
R
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where G,(x, 1) is the inverse Fourier transform of the Mittag—Leffler function

(—p?ry
2 2=y n
Fi(p’r®) = EF(H]) pPP=pp peR
and

lHm uy(x, ) = f G(x — y, Dug(y) dy

a1 R
where

G = — ) —|x|?
WD = D2 P\ gy

and the solution of the wave problem

u(x, 1)
T

u(x, 0) = uy(x), u(x,0) =0

= Vu(x, 1), xeR, t>0

is given by

ux(x, £) = lim J Go(x — y, Due(y) dy
R®

a2

When n = 1, these results ensure the validity of the results in Mainardi (1994).
3. Let
D(A) = {u e Ly(Q): Vu e L), u|s0 = 0}, Au = Vu

Then our results here can be applied to the D-W problem

a»(;(;t) Vi, 1), t>0, xeQCR, 0<a=<2
ux, ) =0 xedQ, t=0

u(x, 0) = uo(x) e W), u(x,00=0, Xe )

4. NEGATIVE-DIRECTION FRACTIONAL CALCULUS

Let C"(J, X) be the set of continuous functions with continuous deriva-
tives up to order n defined on J = (—, 0) with values in X, and C" be the
class of functions f(t) € C"(J, X) with D/f()1,.0=0,j=0,1,...,n — 1.
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We propose a new fractional calculus [defined on J = (—=, 0)] based
on the generalized function ¥,(f) (Gelfand and Shilove, 1958), r € J and
o > 0, where

0 t>0
Y () =< |e|*!
«0 =1t =0
I'(a)

Definition 4.1. The negative-direction fractional integral of order
a > 0 of the integrable function f(¢) is defined by

oy — _ (@ —n"
ST () = V() * f(D) = T f@)de, <0 (4.1)

and the fractional derivative of order a > 0, [@] = n — 1, of the function
g(H) e C"(J, X) is defined by

Seg(t) = STTN(=1)'Dg(t) = (—1)"W,_(1) * D"g(t) 4.2)

Lemma 4.1. Let a > 0. If f(#) € C(J, X), then

lim S~%f(¢) = S7Pf(2), p=12... 4.3)
a—=p
where
0
S7f(n = J f(8) do 4.4)
Also, if g(t) € C", then
D'S™g(t) = S7*D"g(® 4.5)
S7eg(r) = §”C*N(—1)"Dg(r) (4.6)

Proof. Let ||-]| be the norm of X. From Definition 4.1 we have

IS=f@) — STl

(@ —n*' (@8-
[ ( I  (p- D! )f © ""H

0

((e o g t)""‘>‘ b

= Slllpllf(t)llf T(a) =D

!
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but since x* V(@) > x*"YWp - Wasa—>p,p=1,2,..., weget(4.3).
Now since (integrating by parts)

0 _ aoa—1
Seg(r) = J %g«» do
e PO (d
~ T+ 050 f, Tl + 1) (de g(O)) %

then for g(t) € C!, we get S™%g(Y) = S~@*D(—1)Dg(t), @ > 0. Repeating
the process, we get (4.6), and differentiating (4.6), we get (4.5).

Lemma 4.2. Leta > 0, [e] = n — 1. If g() € C", then
lim §*g(r) = (—1)*D?g(2), p=012,....,n—1 (CW))

a—p
where
S%(1) = g(n, e, S°is the identity (4.8)
Proof. From Definition 4.1 we have
She() = S~CI(— 1y Drg(r)
Then
lim $°g(r) = S~ (—1)"D"g(z)

a—p
=(=1)’DPg(), p=0,1,2,...,n—1

Now we have the following theorem:

Theorem 4.3. The family S = {§*; a € R} is a multiplicative group on C".

Proof. Let a, a; > 0; then for f(r) € C(J, X) we have

0 (9 — t)al—l JO (T —_ e)uz—r
(o)) [(ay)

Sa§-af() = J f(7) dr db

t 8
which by Dirichlet’s formula gives
0 (1. — t)u|+u2—l

mf('r) dr = S_(“‘“‘z)f(t) 4.9)

ses~ptn = |

and for f(#) € C", we have (o] = n;, — 1, [a;] = n; — 1)
S¥§%2f(f) = §~RTaD(— DYIS~ 29— DY (¢)
= §-(m¥mai—ad(— Dyn+nf(y)

= Sa|+tx2f'(t)’ nm + ny =n
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Let a; > ay; then
SUS=f(f) = §~e(—DYIS~f(r)
= (~Dys~mmeDs o)
= (~Dyn§merref(p) = St

Also, for a; < a,, we get SUS™2f(r) = S~2720f(f). Therefore we have
$*1852 e § for a;, a; € R.
In the same way we can prove that

S*S*283)f(8) = (S15°D)82f(0)

From Lemma 4.2 we have I = §® € S.
Now, since for a« € R*, [a] = n — 1 and f(¢) € C", we have

578 (1) = S™*ef(0) = S%(0) = f(1)
)
Sy t=8" and $ =5
Finally, for a;, a; € R and f(t) € C", we have
STISUI(1) = SUIHef(r) = ST2STIf(r)
which completes the proof.

Now, for the relation between the negative-direction fractional calculus
and the usual one we have the following theorem:

Theorem 4.4. Let f() = F(1), 7= —t>0,and a > 0. If f(r) € C"(J,
X), then

d™F(T)
t) = ——
S*f(r) 7
Proof. Let B > 0; then from Definition 4.1 we have

_ 0 (e - t)a—l
Pp() * f() = j T £(6) db

H
Putting 6 = —s, we get
—t (_t _ s)a—l

T@) F(—s) ds

) * f(1) = f

0

and for r = —t > 0, we deduce that

Up()) * f(1) = dp(7) * F(7) (4.10)
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Now for o > 0, [a] = n — 1, we have

Sf(r) = §~¢~ “’( )f(t)

= 'b(n u)(t) * ( )f(t)

Using (4.10), we get

d"F(r) _ d°F(7)
ar" d+*

SF(@) = dp-al®) *

Corollary 4.5. Let u(t) € C*(J, X). If u(0) = 0, then

. _ _du(p)
(b fm s = =5
) _d%u(n)
2 uligl- S*u(t) = R

Proof. Using Theorem 4.4 and Lemma 2.2, we get
a*U(r) — dU(1) - du(t)

lim S*u() = lim

a—l aml  dT® dr dt
. . dMU(T) _ dPU(T) _ dPu(p)
S S = I T T e T e
where U(T) = u(@®), v = —t > 0.

5. NEGATIVE-DIRECTION PROBLEM
Consider the problem

S*u(r) = Au(t), >0, < a=2

B w0 =w  w© =0

Theorem 5.1. Let uy € D(A?). If A satisfies (I), then there exists a unique
solution u.(t) € L;(J, D(A)) of the problem (P)~ given by

-1
u () = ug — J ro(s)e‘uy ds, <0, O0<a=2 .1
0
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which is continuous with respect to a & (0, 2] and satisfies

(1 him u,() = T(—Dup = (), 1<0

@  lmSu) = ~2u, <0

a1l dt
3) lim u () = ux(2), <0
a—2”

where u,(2) is the solution of the backward problem

? +AUD =0, w0 =u, t<0 62

and u,(?) is the solution of the backward problem

2
‘%’;2@ = Au(t),  u(©) = up u(0)=0, <0 (5.3)
Proof. Using Theorems 2.1 and 4.4, we get the results.

Now let X = R* and u(x, £): R" X J — R*; then we have the follow-
ing definition.

Definition 5.2. The backward fractional diffusion-wave equation is
S%(x, t) = Au(x, 1), <0, 0<a=2 (5.4)

and the backward fractional diffusion-wave problem is

Su(x, 1) = Au(x, 1), xeR, <0 0<a=s?2
(D-W)~
u(x, 0) = up(x), u(x,00=0, xeR"

Combining the results of Section 4 and this section, we prove the
following theorem:

Theorem 5.3. Let ug(x) € D(A?). If A satisfies (I) with X = R¥, then the
D-W~ problem has a unique solution u.(x, f) € L,(J, D(A)) continuous with
respect to a e (0, 2] and satisfies

M lirr} ug(x, t) = T(—Dug(x) = uy(x, 1)

_duix, 1)

2 lim $%u,(x, t) =
() lim uq(x, 1) Ey
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3 lim u,(x, ©) = uy(x, 1)
a2

where u;(x, ?) is the solution of the backward problem

a_u(;,’_t) + Au(x, ) =0, u(x,0)=ux), xeR

and u,(x, t) is the solution of the backward wave problem

2
Fulx, 0 ua(;, D _ Au(x,n), xeR, <0

u(x, 0) = ug(x), uix,0)=0, xeR"
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