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Fractional-Order Diffusion-Wave Equation 
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The fractional-order diffusion-wave equation is an evolution equation of order 
et ~ (0, 2] which continues to the diffusion equation when ~t ---> 1 and to the 
wave equation when ct ---> 2. We prove some properties of its solution and give 
some examples. We define a new fractional calculus (negative-direction fractional 
calculus) and study some of its properties. We study the existence, uniqueness, 
and properties of the solution of the negative-direction fractional diffusion- 
wave problem. 

1. NTRODUCTION 

Let X be a Banach space, let Y C X, and let Lt(L Y) be the set of 
functions f ( t )  E Y (for each t e I) which is integrable on I (where I = [0, 
T], T < oo). Let A be a closed linear operator defined on X with domain 
D(A) dense in X. We have d~/dt ~ as the fractional differential operator of 
order ot > 0 (EI-Sayed, 1992, 1993, 1995; EI-Sayed and Ibrahime, n.d.; 
Gelfand and Shilove, 1958). 

Consider the fractional evolution equation 

d~u(t) 
- - - A u ( t ) ,  t > 0 ,  0 < a < - 2  (1.1) 

dt ~ 

Here we study first the continuation of equation (l.1) when ct --> 1 and ot 
--> 2. We define the fractional diffusion-wave equation and the fractional 
diffusion-wave problem and prove that it is well posed. Combining our results 
here and the results of Wyss (1986), Schnrider and Wyss (1989), and Mainardi 
(1994), we give some examples. 

Second, we define the negative-direction fractional calculus (integral 
and derivative) and prove some of its properties. 
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312 El-Sayed 

Finally, we study the existence, uniqueness, and properties (concerning 
continuation backward in time) of  the solution of the negative-direction 
fractional diffusion-wave problem. 

2. DIFFUSION-WAVE E Q U A T I O N  

Consider the two initial value problems 

(P) 

(Q) 

{ ~t(v t)- -= Au(t), 

u(O) = Uo 

t > 0 ,  

I df~u(t) -= Au(t), t > O, 
dt a 

u ( 0 )  = u0, u , ( 0 )  = ul 

0 < ~ 1  

1 < 1 3 - - < 2  

where A satisfies the following condition: 

(I) A generates an analytic semigroup { T(t),  t --> 0 } on X; in particular, 
the resolvent set of  A contains the set 

Ai = / h  
"tr } "tr 

c : l a r g h [ < ~ - + 8 ,  , 0 < 8 1 <  

and I I (h l  - A)-111 ~ M / I K I ,  Re h > 0 on AI for some constant M > 0, and 

d~u(t )  dku( t )  

dt ~ dt ~ 
- -  * qbk-,,(t), k - 1 = [ct] (2.1) 

is the fractional derivative of  order et > 0 of  the differentiable function u(t), 
where for a > 0, ~b~(t) = U-l/F(et) for t > 0, and dp,~(t) = 0 for t -< 0 [for 
the properties of  ~b,~(t) see Gelfand and Shilove (1958)]. 

The following results are proved in EI-Sayed (1995). 

Theorem 2.1. Let ul and u0 E D(A2). I fA satisfies (I), then there exists 
a unique solution uv(t) E L I (L  D(A) )  of the problem (P) given by 

fo u~(t) = uo - r~(s)e'uo ds, 0 < ~ -< 1 (2.2) 

and a unique solution urn(t) ~ LI (L  D(A) )  of problem (Q) given by 

Io urn(t) = Uo + tul - rf~(s)e~(uo + (t - s )u , )  ds (2.3) 
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and when ul = 0, we have 

lim u~(t) = lim u13(t) = T(t)Uo = ul(t) 
~---~1 - 13--->1 + 

lim d~u~(t) - lim d~u13(t) - AT(t)Uo - dul 
~-~t- dt~ 13~1 + dt~ dt 

where u~(t) is the solution of  the Cauchy problem 

du(t) 
- Au(t), u(O) = Uo (2.4) 

dt 

and r,(t)  ~ L(D(A2), D(A)) N L(D(A), X )  is the resolvent operator satisfying 
[for y E D(A2)] 

r~(t)y = -e-tdp~(t)Ay + r~(t) * e-tdp~(t)Ay 

= e- 'd~(t)Ay + r~,(t)Ay * e-*qb~(t) 

[for other properties of r=(t) see EI-Sayed (1995)]. 

Now let X = R k and u(x, t): R n • I ----> Rk; then we have the follow- 
ing definition. 

Definition 2.2. The fractional D-W (diffusion-wave) equation is the 
equation 

O~u(x, t) 

0t ~ 
- A u ( x , t ) ,  t > 0 ,  0 < o L - - < 2  (2.5) 

and the fractional diffusion-wave problem is the Cauchy problem 

(D-W) 
{ "O~u(x' t-------------z" - Au(x, t), t > O, x ~ R", 

Ot ~ 

.u(x, O) = Uo(X), u,(x, O) = O, x ~ R" 

0 < c ~ _ < 2  

Lemma 2.3. Let u(x, t): R" • I ~ R" and 0 < e~ --< 2. If u,(x, 0) = 0, 
then as a ~ 1 the D-W problem reduces to the diffusion problem 

Ou(x, t) 
- - - A u ( x , t ) ,  u(x,O) =uo(x) ,  x ~ R " ,  t > 0  (2.6) 

Ot 

and as a ---> 2, the D-W problem reduces to the wave problem 

02u(x, t) 
02 t -- Au(x, t), u(x, O) = Uo(X), u,(x, O) = 0 (2.7) 
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Proof Let 0 < at <-- 1; then from the properties of  the fractional derivative 
and the convolution operation (Gelfand and Shilove, 1958) we get 

a~u(x, t) lim(aU(X, t) ) 
lim " ~  - ~--,l\ at * dOl-~,(t) 

a - - * l  - 

au(x, t) au(x, t) 
- - -  * ~ ( t )  - - -  

at at 

and when 1 -< ot < 2 we have 

lim a~u(x' t) 
~_.i + at '~ 

,. {a2u(x, t) 
- -  - . m l  ~ * + 2 - ~ ( t )  

J 
= lim(aZu(x, t) ) 

~-~ \  at 2 * + , ( t )  

au(x, t) au(x, t) 
u,(x, O) - - -  

at at 

we also have 

a~u(x, t) lim(.02u(x, t) ) 
lira ~-~ - , ~2 \  at 2 * qb2-~(t) 

O2u(x, t) 32u(x, t) 
* 8 ( 0  - 

a t  2 at 2 

and the result follows. 

Combining the results of  Theorem 2.1 and Lemma 2.3, we can easily 
prove the following theorem. 

Theorem 2.4. Let Uo(X) ~ D(A2). If A satisfies the condition (I) where 
X = R k, then the D-W problem has a unique solution u~(x, t) ~ LI(L D(A)) 
continuous with respect to e t e  (0, 2] and satisfies 

lim us(x, t) = lim us(x, t) = T(t)Uo(X) 
a - - - -~  I - ot----~ I + 

(2.8) 

lim u~(x, t) = u2(x, t) (2.9) 
c t  - - - ~ 2  - 

where u2(x, t) is the solution of the wave problem (2.7). 

Theorem 2.5. If the assumptions of  Theorem 2.4 are satisfied, then the 
solution of the D-W problem continuously depends on the initial data Uo(X). 
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Proo f  Let u~(x, t) be the solution of the D-W problem and a~(x, t) be 
the solution of the D-W problem with ti0(x) instead of u0(x); then for given 
�9 > 0 such that [[Uo(X) - aO(X)I]DcAZ) < �9 we have (E1-Sayed, 1995) 

and so 

u~(x, t) - a~(x, t) 

= Uo(X) - ao(X) + r~(s)eS(uo(x) - ti0(x))ds 

Ilu~(x, t )  - a~ , (x ,  t)IIDcA) 

-<(1 + c ~ t ~ ) l l U o ( X ) -  /~0(x)l[o~,~2) 

- �9 = 8 ( � 9  

which proves the theorem. 

3. EXAMPLES 

1. Let A = (-1)t+raV 2m, x = R k, and Uo(X) ~ W~m(Rn), 1 <-- p < ~.  
Then the results here can be applied to the D-W problem 

I ~  
0 u(x, ) 1 l+m V ~ u  x t = ( - )  ( , )  

(D-W) | x ~ R  n, t > O ,  O < o t < - - 2  
/ 

[u (x ,  O) = Uo(X), u,(x, O) = 0 

2. Let m = 1, k = 1, and p = 2 in Example 1. Then combining our 
results here and the results of Wyss (1986) and Schnrider and Wyss (1989), 
we deduce that the D-W problem 

{ 'O~ 'u(x , t )_  V2u(x,t), t > 0 ,  x E R  ~, 0 < a - - < 2  
0t ~ 

u(x, O) = Uo(X) ~ W~(R~), u,(x, O) = 0 

has a unique solution u~(x, t) ~ Lt (L W2(R~)) given by 

u~,(x, t) = ~ G~(x - y, t)uo(y) dy, 0 < a <- 2 
J ~  
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where G.(x, t) is the inverse Fourier transform of the Mit tag-Leff ier  function 

j~0 (-- p2ta)J p2 
F'~(p2t~) = -= r ( l  + jo t ) '  = p" p' p ~ R" 

and 

where 

lim %(x, t) = f ~  Gl(X - y, t)uo(y) dy 
~---~1 

G,(x, t) - 1 {- Ix12  
[2(.rrt)u2]. e x p ~ - - - ~ )  

and the solution of the wave problem 

'02U(X, t) __ V2u(x, t), x e R", t > 0 
at  ~ 

u ( x ,  O) = Uo(X), ut(x, O) = 0 

is given by 

u2(x, t) = lim ( G~(x - y, t)uo(y) dy 
et---~2 JR" 

When n = 1, these results ensure the validity of  the results in Mainardi (1994). 

3. Let 

D(A) = {u ~ /-a(f/): V2u a L2(~), ulan = 0}, Au = V2u 

Then our results here can be applied to the D-W problem 

I ~  t) = V2u(x, t), t > 0 ,  x a f l  C R", 0 < o r - - < 2  
OF" 

u(x, t) = O, x ~ Ofl, t >-- O 

lu (x ,  o) = uo(x) ~ w~(a ) ,  u,(x, o) = O, x ~ f~ 
t 

4. N E G A T I V E - D I R E C T I O N  F R A C T I O N A L  C A L C U L U S  

Let Cn(J, X) be the set of continuous functions with continuous deriva- 
tives up to order n defined on J = (-0% 0) with values in X, and C" be the 
class of functions f(t) ~ C"(J, X) with DJf(t) Ill0 = 0, j = 0, 1 . . . . .  n - I. 
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We propose  a new fract ional  calculus  [defined on J = ( - %  0)] based  
on the general ized function ~ , ( t )  (Gel fand and Shilove,  1958), t ~ J and 
a > 0, where  

(~t,~_, t > O  
�9 ~(t) = 

[ F(ot) ' t - 0 

Definition 4.1. The negat ive-direct ion fractional integral o f  order  
a > 0 of  the integrable funct ion f(t) is def ined by  

i0 ( 0  - -  t )  c ` - I  S-~f(t) = xlr=(t) * f ( t )  = ~-(~-~ f ( 0 )  dO, t < 0 (4.1) 

and the fractional  der ivat ive o f  order  a > 0, [a]  = n - 1, o f  the function 
g(t) ~ Cn(J, X) is def ined by  

S~g(t) = S-(~-~')( - l)~/Y'g(t) = (-1)nxlt ,_~(t)  * lY'g(t) (4.2) 

Lemma 4.1. Let a > 0. I f f ( t )  e C(J,  X),  then 

l im S-~f(t) = S-Of(t), p = 1, 2 . . . .  (4.3) 
ct----~ O 

where 

I 
0 

S -  ~( t )  = f(O) dO 

Also, if  g(t) E C n, then 

lY, S-~g(t) = S-,D,g(t)  

S-~g(t) = S-(,+,~)(_ l),,D~g(t) 

Proof Let  I1" II be the norm o f  X. From Defini t ion 4.1 we have 

]]S-~f(t) - s-of(Oil 

_ t ) ~ - i  I 
 o(t,Ol ) 

_< suplbr(t)l I (0 - (0 - t) e-l dO 

(4.4) 

(4.5) 

(4.6) 
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but since xa-t/F(or --+ xP- t l ( p  - 1)! as a --+ p, p = 1, 2 . . . . .  we get (4.3). 
Now since (integrating by parts) 

io  _ t ) . - i  s_ g(t ) = (0 F(hS g(0) d0 

_ ( - t )  ~ I ~  ( 0 - / ) ~  ( d )  
r ( a  + 1) g(0) - ~ - a  + T) d0 g(0) dO 

then for g(t) E C I, we get S-~g(t)  = S-(~+1)( - 1)Dg(t), ot > 0. Repeating 
the process, we get (4.6), and differentiating (4.6), we get (4.5). 

Lemma 4.2. Let ot > 0, [a] = n - 1. If g(t) ~ C n, then 

lim S~g(O = (- I )PDPg(t ) ,  p = 0, 1, 2 . . . . .  n - I (4.7) 

where 

S~ = g(t), i.e., S o is the identity (4.8) 

Proof. From Definition 4.1 we have 

S~g(t) = S -  ("- ~ ) ( -  1)nlY'g(t) 

Then 

lim S~g(t) = S-(n-P)( - 1)nD~g(t) 
ot--+p 

= ( - I )PDPg( t ) ,  p = O, 1, 2 . . . . .  n - 1 

Now we have the following theorem: 

Theorem 4.3. The  family S = {S~; ot ~ R} is a multiplicative group on C". 

Proof  Let a t ,  a2 > 0; then fo r f ( t )  ~ C(J, X) we have 

Io(o- oo,-' f; ( , -  o) o2-: 
S-" 'S-r  = F-(~O) -F('~2) f('r) dT dO 

which by Dirichlet 's formula gives 

i o  (-r - t) ~'l+~2-t ~ . .  dr  S-(~'+~'2)f(t) (4.9) S-~"S-~2f(t)  = ?(-~7 ~ a2--7 aft'r) = 

and fo r f ( t )  e C ", we have ([al] = nl - 1, [a2] = n2 - 1) 

S~i S~,2f( t) = S-(nI-=l) ( -  D ),l S-(nz-=a)(-D )n~f ( t) 

= S-r +,=-~,-~,z)(-D),, +"2f(t) 

= S"l+=2f(t), nl + n2 <- n 
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Let ax > c~2; then 

S.~S-=Zf( 0 = S-(nJ-al)(-D)nts-~2f(t)  

= (-D). ,S-( . , -=,)S-~.2f( t)  

= (-D).~S-~.,-~,+~,2~f(t) = S~,- .2f(t)  

Also. for ax < az. we get S~S-~2f(t)  = S-(~2-~)f(t).  Therefore we have 
S ~ S  '~2 ~ S for  a~. a2 ~ R. 

In the same way we  can prove that 

S~t(S~2S~3)f(t) = (S~lS.2)S~3f(t) 

From L e m m a  4.2 we  have I = S o ~ S. 
Now. since for  a ~ R +, [a]  = n - 1 and f ( t )  E C". we have 

S-~'S~f(t) = S-~+r = S~ = f ( t )  

SO 

(S") - l  = S -r and (S-~) -1 = S" 

Finally, for cq, ~2 E R and f ( t )  E C", we have 

SalSa2f( t )  -= S~l+a2f( t )  = Sa2Salf ( t )  

which completes  the proof.  

Now, for the relation between the negative-direction fractional calculus 
and the usual one we have the fol lowing theorem: 

Theorem 4.4. L e t f ( t )  = F('r), "r = - t  > 0, and a > 0. I f f ( t )  ~ C"(J,  
X), then 

d~F(.r) 
S r  d'W 

Proof. Let [3 > 0; then f rom Definition 4.1 we have 

i 
o (0 - t )  ~ - I  

~ ( t )  * f ( t )  = F ( a )  f ( 0 )  dO 

Putting 0 = - s ,  we get 

t~13(t ) * f ( t )  = f0 -t ( - t  - s) ~- l  F ( a )  F ( - s )  ds 

and for "r = - t  > 0, we deduce that 

Of~(t) * f ( t )  = qb~('r) * F('r) (4.10) 
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Now for et > 0, [et] = n - 1, we have 

S~f( t)  = S -0'-~0 f ( t )  

= ~( ._`*) ( t )  * t )  

Using (4.10), we get 

S~f( t)  = d~n_~('t) * - -  
d nF(x) _ d~F('r)  

dr" d'r '~ 

Corol lary  4.5. Let u(t)  ~ C2(j, X). If ut(O) = O, then 

au(t) 
(1) lim S~u(t)  = - - -  

~-~1 dt  

d2u(t )  
(2) lim S ~ u ( t ) =  

~-~2- dr2 

Proof.  Using Theorem 4.4 and Lemma 2.2, we get 

lim S~u(t)  = lim d=U(r)  - dU(r_____)) _ du( t )  
a-+ l r dT`* d'T d t  

d~U('c) d2U(,r) _ d2u(t)  
lira S ~ u ( t ) =  lim - - - - -  

,,-~2- `*~2- dr'* d'r 2 dt 2 

where U(-r) = u(t), "r = - t  > O. 

5. NEGATIVE-DIRECTION PROBLEM 

Consider the problem 

{ S~u(t) =Au( t ) ,  t > O, O <  oL <-- 2 

(P)- u(0) = Uo, u,(0) = 0 

T h e o r e m  5.1. Let Uo E D(A2).  IfA satisfies (I), then there exists a unique 
solution u`*(t) ~ Ll (J ,  D ( A ) )  of  the problem (P)-  given by 

I0-' 
u`*(t) = Uo - G(s)e 'uo  ds, t < 0, 0 < ct <- 2 (5.1) 

J 
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which is continuous with respect to o t e  (0, 2] and satisfies 

(1) lim u~(t) = T(- t )Uo = Ul(t), t < 0 
ct---~ l 

d 
lira S~u~(t) = - 5  ul, 
c~--q, 1 

(2) t < 0 

(3) lim u~(t) = u2(t), t < 0 
~ - - ~ 2 -  

where ul(t) is the solution of the backward problem 

du(t) + Au(t)  = 0, u(0) = u0, t < 0 
dt 

and u2(t) is the solution of  the backward problem 

d2u(t) 
dt  2 - Au(t),  u(0) = u0, u,(O) = O, t < O 

(5.2) 

(5.3) 

Proof. Using Theorems 2.1 and 4.4, we get the results. 

Now let X = R k and u(x, t): R" X J --) Rk; then we have the follow- 
ing definition. 

Definition 5.2. The  backward fractional diffusion-wave equation is 

S~u(x, t) = Au(x,  t), t < 0, 0 < ot --< 2 (5.4) 

and the backward fractional diffusion-wave problem is 

I S~u(x, t) = Au(x,  t), x ~ R", t < O, 0 < ~ <- 2 
(D-W)- 

[u(x, O) = Uo(X), ut(x, 0) = 0, x R" 

Combining the results of  Section 4 and this section, we prove the 
following theorem: 

Theorem 5.3. Let Uo(X) E D(A2). I fA  satisfies (I) with X = R k, then the 
D-W-  problem l/as a unique solution u~(x, t) E Ll(J, D(A))  continuous with 
respect to c~ E (0, 2] and satisfies 

(1) lim u~(x, t) = T(-t)Uo(X) = Ul(X, t) 
ot---~ l 

Oul(x, t) 
(2) lim S~u~(x, t) = 

a~l Ot 
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(3) lim u~(x, t) = u2(x, t) 
a---)2- 

where ui(x, t) is the solution of the backward problem 

au(x, t) 
- -  + Au(x, t) = O, u(x, O) = uo(x), 

8t 

and u2(x, t) is the solution of the backward wave problem 

I 02u(x, t) _ Au(x, t), x ~ R n, t < 0 
at 2 

u(x, o) = Uo(X), 

x ~ R  ~ 

ut(x,O) = 0 ,  x ~ R" 
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